Science and technology in the People’s Republic of China | Wikipedia audio article

Science and technology in the People’s Republic of China | Wikipedia audio article


Science and technology in China have developed
rapidly during the 1990s to 2010s. The Chinese government has placed emphasis
through funding, reform, and societal status on science and technology as a fundamental
part of the socio-economic development of the country as well as for national prestige. China has made rapid advances in areas such
as education, infrastructure, high-tech manufacturing, academic publishing, patents, and commercial
applications and is now in some areas and by some measures a world leader. China is now increasingly targeting indigenous
innovation and aims to reform remaining weaknesses.==History==China was a world leader in science and technology
until the early years of the Qing dynasty. Chinese discoveries and Chinese innovations
such as papermaking, printing, the compass, and gunpowder (the Four Great Inventions)
contributed to the economic development in Asia and Europe. Chinese activity started to decrease in the
fourteenth century. Unlike in Europe, scientists did not attempt
to reduce observations of nature to mathematical laws and they did not form a scholarly community
with criticisms and progressive research. There was an increasing concentration on literature,
arts, and public administration while science and technology were seen as trivial or restricted
to limited practical applications. The causes of this Great Divergence continue
to be debated. One factor is argued to be the imperial examination
system which removed the incentives for Chinese intellectuals to learn mathematics or to conduct
experimentation.After being defeated repeatedly by Western nations in the 19th century, Chinese
reformers began promoting modern science and technology as part of the Self-Strengthening
Movement. After the Communist victory in 1949 science
and technology research was organized based on the model of the Soviet Union. It was characterized by a bureaucratic organization
led by non-scientists, research according to the goals of central plans, separation
of research from production, specialized research institutes, concentration on practical applications,
and restrictions on information flows. Researchers should work as collectives for
society rather than as individuals seeking recognition. Many studied in the Soviet Union which also
transferred technology. The Cultural revolution, which sought to remove
perceived “bourgeois” influences and attitudes, caused large negative effects and disruptions. Among other measures it saw the scientific
community and formal education attacked, intellectuals were sent to do manual labor, universities
and academic journals were closed, most research ceased, and for nearly a decade China trained
no new scientists and engineers.After Mao Zedong’s death, S&T was established as one
of the Four Modernizations in 1976. The new leader Deng Xiaoping, and architect
of the Chinese economic reform, was a strong promoter of S&T and reversed the policies
of the Cultural revolution. The Soviet inspired system was then gradually
reformed. Media began promoting the value of S&T, scientific
thinking, and scientific achievement. The third and fourth generations of leaders
came almost exclusively from technical backgrounds. The State Council of the People’s Republic
of China in 1995 issued the “Decision on Accelerating S&T Development” which described planned Science
& Technology development for the coming decades. It described S&T as the chief productive force
and affecting economic development, social progress, national strength, and living standards. S&T should become closely associated with
market needs. Not only Soviet style institutes should do
research but also universities and private industries. State institutions should form joint ventures
with Chinese or foreign venture capital in order for S&T developments to reach the industry. S&T personal should become more occupationally
mobile, pay should be linked to economic results, and age and seniority should become less important
for personal decisions. Intellectual property rights should be respected. Information exchange should improve and there
should be competition and open bidding on projects. The environment should be protected. Chinese indigenous S&T in certain key areas
should be especially promoted. Public officials should improve their understanding
of S&T and incorporate S&T in decision making. Society, including Communist Party youth organizations,
labor unions and the mass media, should actively promote respect for knowledge and human talents. During the last 30 years China concentrated
on building physical infrastructure such as roads and ports. One policy during the last decade has been
to ask for technology transfer in order for foreign companies to gain access to the Chinese
market. China is now increasingly targeting indigenous
innovation. During this period China has succeeded in
developing an innovation infrastructure, founded on the establishment of over 100 science and
technology parks in many parts of the country, along with encouragement of entrepreneurship
outside the state-owned sector. Yip and McKern argue that Chinese firms have
evolved through three phases as their innovation capabilities have matured and that by 2017
many of them are of world standard. They are now strong competitors in the China
market and increasingly in foreign markets, where they are establishing local operations.==Techno-nationalism==
While the term “techno-nationalism” was originally applied to the United States in the 1980s,
it has since been used to describe nationalistic technology policies in many countries, particularly
in Asia. Chinese techno-nationalism is rooted in the
country’s humiliation at the hands of more advanced countries in the 19th century. Indeed, China’s leaders (like those of other
countries) have long seen scientific and technological development as vital for achieving economic
affluence, national security, and national prestige. Lacking indigenous technological intellectual
property and innovation are seen as key national problems. The 21st century has thus seen a series of
central government initiatives designed to promote “indigenous innovation” and technological
development more generally in China. These include the National Medium- and Long-Term
Program for Science and Technology Development (2006–20), the Strategic Emerging Industries
initiative, the Internet Plus initiative, and the Made in China 2025 Program, among
others. Through these initiatives, the Chinese state
has intervened in the economy in a variety of ways to promote national technological
development and reduce reliance on other countries. Prioritized industries and firms are protected
and guided. There are systematic efforts to replace foreign
technology and intellectual properties with indigenous technology. Foreign companies are given many incentives
for technology transfer and for moving R&D to China. At the same time the technological abilities
of domestic companies are supported in various ways. Such policies have generated considerable
conflict between China and developed countries, particularly the United States, although China
has often proven flexible when its policies have been challenged.Nationalism and nationalistic
achievements have been seen as becoming the main ideological justifications and societal
glue for the regime as Marxism loses influence. Some science and technology mega-projects
has been seen as questionable trophy projects done for propaganda purposes with Chinese
state-controlled media being filled with reports of Chinese achievements.==Gross domestic expenditure on research
and development==In its Medium and Long-Term Plan for the Development
of Science and Technology (2006–2020), China fixed itself the target of devoting 2.5% of
GDP to research and development by 2020. Between 2003 and 2012, gross domestic expenditure
on research and development (GERD) rose from 1.13% to 1.98% of GDP, suggesting that the
country was on track to meet its target.The research firm Battelle estimates that China’s
GERD will exceed that of the United States by 2023. However, several convergent factors cast doubt
over the accuracy of Battelle’s prediction: the deceleration in China’s rate of economic
growth in 2014, the considerable drop in industrial production since 2012 and the major stock
market slide in mid-2015. After progressing rapidly for a decade, GERD
stabilized at 2.07% of GDP in 2015.China devoted 5.1% of total research spending to basic research
in 2015, according to the UNESCO Institute for Statistics. This is up from 4.8%, on average, over the
past decade, but less than in 2004 (6.0%). The prolonged policy focus on experimental
development has resulted in enterprises contributing three-quarters of Chinese research spending
(77% of total expenditure on R&D in 2015). Enterprises focus on experimental development,
which accounted for as much as 97% of their total research expenditure by 2015. Business enterprises contributed 60% of GERD
in 2000 and 74% in 2008. In 2004, 74% of GERD went on experimental
development. China aims to increase the share of basic
research to 15% of total research spending by 2020.==Institutions==The State Council of the People’s Republic
of China is the top administrative organ in China. Immediately below it are several ministries
and ministry level organisations involved with various aspects of science and technology. The State Council Science and Education Leading
Group, consisting of the leaders of the major science bodies, attempts to organize the national
policy. Efficiency of overall coordination has been
questioned with various agencies seen as having overlapping missions and rivalries for resources
and sometimes engaging in wasteful duplication.The Ministry of Science and Technology of the
People’s Republic of China, formerly the State Science and Technology Commission, is the
body primarily responsible for science and technology strategy and policy. It also administers national research programs,
S&T development zones, and international cooperation. The Ministry of Education of the People’s
Republic of China oversees education as well as research institutes at universities. Several other ministries such as the Ministry
of Industry and Information Technology of the People’s Republic of China, the Ministry
of Health of the People’s Republic of China, and the Ministry of Agriculture of the People’s
Republic of China are also involved in S&T.The National Planning Office of Philosophy and
Social Sciences directs planning for social sciences and philosophy. The Chinese Academy of Sciences (CAS) is the
most prestigious professional science organization in China with China’s scientific elite being
members. It directs many research institutes, research
programs, graduate training programs, and gives influential advice. The Chinese Academy of Engineering (CAE) gives
important advice but unlike the CAS does not have research institutes of its own. The Chinese Academy of Social Sciences (CASS)
has a similar role to CAS for social sciences and philosophy. There are also many more narrow academies
such as the Chinese Academy of Fishery Sciences. The National Natural Science Foundation of
China (NSFC) gives grants to individual researchers after peer-review.The People’s Liberation
Army General Armaments Department directs military R&D. The national scientific and academic organizations
affiliated to the China Association for Science and Technology are also important forces in
scientific and technological research. Research is carried out by governmental research
institutes, in higher learning institutions, and by private enterprises.Local governments
have become increasingly important in R&D funding and may now contribute up to half
of government spending. Intense rivalry for research and high-tech
industry has been argued to sometimes create wasteful subsidized overcapacity, dispersal
of efforts better centralized in a few localities, and poorly judged bureaucratic subsidizing
of technologies that soon become out-dated.==National programmes==
As of 2010, China’s national R&D programmes encompassed the:
Key Technologies Program (renamed in 2006 as “zhicheng” or Support)
National High Technology Program (863 Program) National Basic Research Program (973 Program)
Spark Program – Rural technology Torch Program – New technology commercialization
by creating special hi-tech zones and incubators Key Laboratories Program
Engineering Research Centers State Key and New Product Program
Innovation Fund for Small and Medium-Sized Enterprises
Special Technology Development Project for Research Institutes
Action Plan for Promoting Trade by Science and Technology
National New Products Program Agricultural S&T Transfer FundThe major national
programs received 15-20% of government R&D spending in 2010. They funded research, after a stated competitive
proposal procedure, in universities, institutes, and enterprise. Important project may receive funding from
several programs. The programs have arguably had a strong effect
but have also been involved in scandals, corruption and fraud. They have been accused mainly of producing
derivative works rather than driving innovation and it has been claimed that they ignore merit
in selecting projects in favor of cronyism. China is trying to improve their efficiencyt
hrough measures such as more peer-review and evaluations.==Economic and Technological Development
Zones==Based on the success of the Special Economic
Zones of the People’s Republic of China, China has created Economic and Technological Development
Zones. They have the purposes of building up high-tech
industries, attracting foreign investment, increasing exports, and improve the regional
economy. They are considered to have been very successful
and have been expanded from an initial fourteen to fifty-four.==Education and R&D personnel==In the first participation of Chinese student
in an international student assessment test, the 2009 Programme for International Student
Assessment, 15-year-old students from Shanghai ranked first in all of the three categories:
mathematics, science, and reading. The Chinese students scored particularly well
compared to other nations in mathematics. One explanation for the Chinese results may
be a culture emphasizing education and competitive examinations and more time spent studying
in part due to less participation in activities such as sports. Teaching have become a higher status occupation. Also, industrialized Shanghai which has done
important educational reforms may not be representative for the rest of China. While there was no evidence of cheating or
technical problems with the testing, Shanghai which attracts many immigrants from the rest
of China may have allowed particularly good students to study in the city and the students
may have been told that the test was important for China’s image. The OECD director of the testing, Andreas
Schleicher, said that the results were expected to produce astonishment and had been examined
for accuracy by international experts after the OECD received the Shanghai scores. He also said that the results “refute the
commonly held hypothesis that China just produces rote learning” and “Large fractions of these
students demonstrate their ability to extrapolate from what they know and apply their knowledge
very creatively in novel situations”. In 2015 four major cities in China were tested
resulting in much lower scores; 531 in mathematics, 518 in science, and 494 in reading.China has
become of the world’s biggest sources for research and development personnel. Between 2000 and 2008, the number of engineers
and scientists more than doubled to 1.59 million. Relative to population size this is still
low compared to major developed nations like the United States and Japan but the gap is
rapidly closing. The number of doctorate awards in science
and engineering have increased tenfold since the early 1990s. The number of students in general at universities
increased from 1 million to 5.4 million during the 1998-2007 period. In 2009 alone, China produced over 10,000
Ph.D. engineering graduates, and as many as 500,000 BSc graduates in engineering, mathematics,
information technology, and computer science – more than any other country.The C9 League,
pitched as China’s Ivy League, is an alliance of nine elite Chinese universities which receive
a high amount of national research funding and produce a large share of national research
output. Chinese universities contribute an unusually
large share of patents. The universities receive about half of R&D
money from private enterprises.Eight out of nine members of the Politburo Standing Committee
of the Communist Party of China have engineering degrees.2.25 million students have studied
abroad since 1978. 340,000 were studying abroad in 2011 which
was an increase by 20% over the previous year. In total 818,400 have returned to China with
this occurring in particular in recent years. 186,200 returned to China in 2011 which was
an increase by 38% over the previous year. China offers several benefits for high-achieving
foreign educated Chinese who return to China. Students are now also returning because increased
job opportunities unlike previously when many stayed abroad due lack of jobs in China. A 2009 study found that only 10% of Chinese
students plan to stay in the United States due to visa restrictions, fear of lack of
job opportunities, and belief that US growth will lag behind average world growth rates. 52% believed that the best job opportunities
were in China which was in marked contrast with earlier surveys. 74% felt that the best days of China’s economy
was coming. 68% intended to start businesses. When they return, foreign educated students
often provide crucial science and technology knowledge, management skills, and innovation
abilities for scientific research and industry. The senior management in high-tech companies
are often foreign educated.==Chinese diaspora==
Overseas Chinese, as is the case for other diasporas and their homelands, have contributed
significantly to China’s development. They have been seen as an important channel
for bringing trade, investment, and modern technology to China by both commercial activities
and public non-profit cooperation. By using ‘Brain Gain’ to attract highly educated
overseas Chinese to return to China to work, China has made significant improvements in
its innovation ecosystem although there are some limitations to how sustainable this technique
may be.==Industrial espionage==
One of the objectives of Chinese intelligence activity abroad is alleged to be industrial
espionage as well gaining military technology. Also private companies have been accused of
espionage. Intelligence agencies suspect that thousands
of Western companies may have been affected by data breaches that can be traced back to
China.==International cooperation==
The China Internet Information Center stated in a 2005 article that China had inter-governmental
cooperative S&T agreements with 96 nations, cooperative S&T programs with 152 nations
and regions, and participated in more than 1,000 international S&T cooperative organizations. NGO international exchanges and cooperative
activities had increased. The China Association for Science and Technology
and related organizations as well as the National Natural Science Foundation of China participated
in many cooperative international organizations. Chinese researchers held 281 leading posts
on international organizations’ expert committees and held 293 executive member-director or
higher level positions.==Technology transfer and R&D by multinational
corporations==In the early 1980s foreign companies began
transferring technology by licensing agreements and sales of equipment. Later in the 1980s many multinational corporations
started transferring technology by entering into joint ventures with Chinese companies
in order to expand in China. China in the 1990s introduced increasingly
sophisticated regulations of foreign investment by which access to the Chinese market was
traded for technology transfer. The entry of China into the World Trade Organization
in 2001 required this practice stop but critics argue that it continues. Chinese critics have argued such technology
transfer may be useful for catching up but does not create new, cutting edge technologies.China
has increasingly encouraged multinational corporations to create R&D centers in China. Chinese critics have argued that foreign owned
R&D mainly benefits foreign companies and removes many talented Chinese researchers
from indigenous companies and institutions. Chinese supporters have argued that the foreign
R&D serves as a role model and encouragement for indigenous companies and creates skilled
communities from which labor and knowledge can easily flow to indigenous companies. In 2010 there were 1,200 such R&D centers
and 400 out the Fortune 500 corporations had created such R&D centers. Corporations have argued that this is a necessity
in order to adapt products for the local requirements of the Chinese market as well as it being
essential for maintaining global competitiveness to make use the many available Chinese engineers
and scientists. China is now ranked first when multinational
corporations are asked in which nation future R&D centers are most likely to be located.==Innovation==
A 2005 report found serious shortcomings to China’s national innovation system. There were problems with services to help
turn S&T work into results and the allocation of national funding to support S&T was far
from optimal. Sometimes researchers became short-sighted
if they get too close to the market. Another serious problem was that companies
facing severe competition looked first to purchase foreign technology rather than investing
in developing technology and technology development capacity at home in China. Many of the patent applications came from
medium-sized enterprises (70%) since small enterprises invest little in research. China’s hierarchical, top-down society where
authority is greatly respected and feared has been argued to stifle creative debate.China
in a 2006 report outlined policies for improving innovation. They include 20 large megaprojects in areas
such as nanotechnology, high-end generic microchips, aircraft, biotechnology, and new drugs. This is combined with a more bottom-up approach
on a Silicon Valley model consisting of small start-ups, venture capital, and cooperation
between industry and universities.It has also been argued that China is the world leader
in making small, innovative improvements to existing designs. One example is continual improvements to the
design of power supplies making them gradually smaller, less expensive, and more energy efficient. This may not create completely new products
or create headlines but may be more important for creating employment.A 2016 NBER paper
found that the Chinese economy is becoming increasingly innovative. The study found that rising labor costs in
China and “expanded market opportunities in the world economy” were the main drivers behind
innovations. The study also found that state-owned firms
innovated less than private firms, even though state-owned firms received far greater subsidies.==Procurement==
The central Chinese government, a large buyer of high-tech products, in 2009 proposed controversial
policies demanding that companies selling to it promote Chinese innovation and that
the products sold are free of foreign intellectual property. The most controversial parts were later withdrawn
but local Chinese governments continue to use procurement to encourage indigenous innovation.==Intellectual property==
Effective protection of intellectual property has been seen as weak. There has been an increasing recognition of
that this discourages indigenous innovation and efforts has been made to strengthen the
system.China has been accused of not protecting foreign intellectual property and tacitly
allowing such technologies to be copied and claimed to be Chinese intellectual property,
and even of directly facilitating the transfer of foreign technological intellectual property
from corporations to Chinese companies. Companies are required to divulge to Chinese
authorities the inner workings of many technologies in the name of national security, and have
accused the Chinese security forces of illegally sharing this technology with civilian industries.===Patents===
In 2011, China became the nation with the greatest number of filed patent applications. However, this reflects in part that the government
gives companies incentives for filing patent applications regardless of if eventually granted. The percentage of patents applications in
China filed by Chinese companies rose from less than 52% in 2006 to nearly 73% in 2010. World Intellectual Property Organization data
shows that Chinese companies have also become more important regarding patents overseas
with Chinese companies now being on place two and four regarding number of patent applications
filed by individual companies. China aims to transform the economy from “Made
in China” to “Designed in China” and from contract manufacturing to having brand name
companies with resulting improved profit margins.China lags behind the United States for several
patent indicators. In 2013, US residents filed 287,831 patents,
almost the same number as non-residents (283,781). In China, on the other hand, just 17% of patents
were filed by non-residents and there were as many as 704 936 resident applications to
the Chinese State Intellectual Property Office. This compares with 21% of patent applications
involving non-residents in Japan. In addition, although China is catching up
fast, it still trails the USA, Japan and the European Union for the number of patents in
force. China counted 1,851 triadic patents in the
USPTO database in 2012, compared to 15,391 for Japan; 13,978 for the European Union and
13,785 for the United States.Among patents filed with the Chinese State Intellectual
Property Office in 2013, just over half (64,153) of those filed by non-residents (120,200)
were granted. This compares with one in five for residents.China’s
global share of triadic patents rose from 0.5% to 3.6% between 2002 and 2012. Over the same period, the Republic of Korea
almost doubled its own world share to 5.5% (up from 2.8%). In 2012, Japan, the European Union and the
United States continued to dominate global patents, accounting for 29.6%, 26.9% and 26.5%
respectively. This means that the Big Five accounted for
92% of the triadic patents in the world in 2012.==Standards==
To encourage innovation and avoid foreign intellectual property China has been developing
indigenous technical standards. One example is the TD-SCDMA 3G standard. Critics have seen it as costly and delaying
3G introduction while supporters argue that it has increased technical abilities and experience
which has increased Chinese competitiveness regarding 4G. Long-Term Evolution Time-Division Duplex is
being implemented as China’s indigenous 4G standard.==Academic publishing==
The Royal Society in a 2011 report on academic publishing stated that in share of English
scientific research papers the United States was first followed by China, the UK, Germany,
Japan, France, and Canada. The report predicted that China would overtake
the United States some time before 2020, possibly as early as 2013. China’s scientific impact, as measured by
other scientists citing the published papers the next year, is smaller although also increasing. An analysis of ISI Web of Knowledge data found
that China had increased its share of the most highly cited science articles from 1.85%
in 2001 to 11.3% in 2011. By 2014 China could surpass Germany and the
UK and be ranked second after the United States. The share of the United States declined from
64.3% to 50.7% during the same ten-year period.A 2009 study of Chinese social science studies
in the Social Sciences Citation Index found a slow increase until 1999. The 1999-2007 period saw a very rapid increase. However, in 2007 China still only contributed
1.39% of the studies and mainland China only surpassed Hong Kong in 2006. Economics & business had larger share than
social, political & communication science and psychology. The low share of social sciences compared
to natural sciences may reflect that this is a common pattern in Asian nations, that
Chinese social scientists publish in national journals not included in the Index and have
less career incitements regarding publishing in international journals, and that state
ideology and control is more important for social sciences than natural sciences. In China natural sciences are administered
by the Ministry of Science and Technology while social sciences are administered by
the National Planning Office of Philosophy and Social Sciences which may hinder inter-disciplinary
collaboration.Articles published in China related to basic medial science and clinical
research and indexed by PubMed increased on average by 31.2% and 22% each year between
2000 and 2009. Randomized clinical trial were about 1/3 of
clinical research articles. However, in 2009 this still represented only
1.5% of worldwide clinical research articles and 1.7% of worldwide randomized clinical
trials. Clinical research education for medical students
and the involvement and the supporting environment for medical doctors regarding clinical research
have shortcomings.Science-Metrix, a Canadian data-analysis company, predicted that in 2010
China would publish as many natural sciences and engineering peer-reviewed papers as the
United States. In 2015 China is predicted to publish as many
papers as the US across all fields. In 2030 China is predicted to surpass the
US in life and social sciences.There are 8,000 journals and 4,600 in scientific fields. Almost all Chinese science organisations publish
their own journal. The government owns or supports most journals
with only a small number being privately owned. The “publish or perish” system has been argued
to contribute to many low quality journals and articles that are infrequently cited and
also to plagiarism and fraud. The Chinese government has put into place
stricter regulations, punished or terminated some journals, and aims increase quality control
and peer evaluation of journals as well as to create five to ten large publishing groups. As part of the reforms, in 2012 the China
Association for Science and Technology, which oversees 1,050 journals, in a declaration
listed various forms of misconduct, plagiarism, and fraud and as well, the penalties for perpetrating
them such as written warnings, blacklisting, contacting the researcher’s home institution
or funding agencies, or public disclosure. It has also been seen as important by increasing
pressure on other journals and by informing editors who may not know that some actions
such as favoring researchers based on personal relations are unacceptable. China also plans to give substantial financial
incentives to top journals based on factors such as their Chinese and international impact
factor. It has been questioned if this will have an
effect on the many poor quality journals who in return for money help researchers fill
their institutional requirements for published papers.==State-owned enterprises==
Chinese state-owned enterprises are owned by a variety of actors such as local governments
and governmental agencies. They may benefit from advantages not available
for smaller, more innovative firms which have been seen as problematic. In 2010 state owned enterprises won many biddings
for renewable energy projects since they did not have worry about paying off investments
for several decades and could ignore risks and costs. The owners may attempt to protect their enterprises
from competition by regulations or otherwise use their influence in an unfair manner which
may stifle more innovative, private competitors. Private enterprises surpassed stated owned
enterprises during the 2002-2007 period regarding rapidity of increase of research spending,
patent applications, and R&D laboratories. The number of research scientists and engineers
increased rapidly in private enterprises while they declined in state owned enterprises.==Corruption==
Concerned about corruption in Chinese science, some Chinese scientists, including Professor
Liu Ming (刘明) of Zhejiang University in his 2005 book Critique of the Academic Evaluation
System (学术评价制度批判), argue that interference from government officials and
university bureaucrats makes peer review far less effective in China than it could be. The time scientists spend cultivating politically
influential people is lost to scientific research. Liu argues that the command economy mentality
of measuring everything by the numbers combined with pervasive political interference results
in a great waste of money, human talent as well as considerable corruption in Chinese
science. A 2008 investigation into a certification
for high-tech enterprises allowing large tax breaks and other advantages found that more
than 70% of the enterprises had gained this under questionable circumstances and an investigation
of a sample found that 73% did not pass the requirements.==Awards==
The State Science and Technology Prizes, including the State Preeminent Science and Technology
Award, are the highest honor in People’s Republic of China in science and technology, in order
to recognize citizens and organizations who have made remarkable contributions to scientific
and technological progress, and to promote the development of science and technology.==Specific areas of R&D==
The 13th Five-Year Plan for the National Economy and Social Development (2016–2020) will
initiate the key Scientific and Technological Innovation 2030 Project in the following key
areas: aero-engines and gas turbines; a deep sea station; quantum communication and quantum
computers; brain sciences and brain research. The project also encompasses nine other sub-projects,
including an innovative seed industry, smart grid, space-terrestrial
information network, intelligent manufacturing and robots.===Agriculture===
There is a lack of arable land and water which means only new technology can increase the
output of Chinese agriculture. Former President Jiang Zemin’s has therefore
called for a “new revolution in agricultural science and technology.” Restrictions and regulations concerning genetically
modified foods have been introduced or proposed after widespread public concern. China has been buying millions of foreign
breeder animal as well as large amount of foreign semen and livestock embryos in order
to rapidly improve the genetics of Chinese livestock. More advanced agricultural methods such as
increasing use of pesticides has contributed to concerns regarding the Food safety in China.===Aquaculture and fishing===In 2008 the fishing industry in China accounted
for 34% of the global output. Aquaculture in China had more than twice the
output of capture fishing and contributed 62.3% of the global aquaculture output. The rapid growth of aquaculture is in part
due to Chinese research such as regarding the artificial breeding of carps.===Chemistry, materials science and nanotechnology
===A 2012 study found that China’s share of academic
papers in the field of nanotechnology had increased from less than 10% in 2000 to nearly
a quarter in 2009 and had overtaken the United States for first position. However, China was less influential in the
top three journals and regarding citations, suggesting a lesser quality. In terms of the density of publication, however,
the United States remained ahead, with 68.76 articles on nanotechnology per million inhabitants,
compared to 25.44 per million for China in 2014. China was in second place for the number of
patents granted. A number of bodies have been created to establish
national standards and ensure oversight. According to the Institute of Scientific and
Technical Information of China, which is affiliated with the Ministry of Science and Technology,
China contributed about one-quarter of all academic articles published around the world
in materials science and chemistry and 17% of those published in physics between 2004
and 2014 but just 8.7% of those in molecular biology and genetics. This nevertheless represents a steep rise
from just 1.4% of the world share of publications in molecular biology and genetics over 1999–2003. KPMG in 2010 predicted that the Chinese chemical
industry will become world’s largest producer by 2015. The Chinese government aims to make China
self-sufficient regarding petrochemicals and plastics with the exception of the raw feedstock
of oil and gas. The Chinese industry is increasing R&D in
order to create higher value products using more advanced technology. Another development===
Deep sea exploration===China is developing its deep sea exploration
capabilities, such as by the Jiaolong submersible, with an eye to future applications such as
deep sea mining.===Electronics and information technology
===In 2009 China manufactured 48.3% of the world’s
televisions, 49.9% of mobile phones, 60.9% of personal computers and 75% of LCD monitors. Indigenously made electronic components have
become an important source of recent growth.====Artificial intelligence====
On 8 July 2017, the Chinese State Council announced plans to turn China into the world
leader in artificial intelligence (AI) by 2030, seeking to make the industry worth 1
trillion yuan. The State Council published a three-step road
map to that effect in which it outlined how it expects AI to be developed and deployed
across a wide number of industries and sectors, such as in areas from the military to city
planning. According to the road map, China plans to
catch up to current AI world leaders’ technological abilities by 2020, make major breakthroughs
by 2025 and be the world leader in 2030.====Drones and robotics====
China is the leader in drone technology, it is the first country in the world to create
large scale transport drones, as well as the first to produce an amphibious drone. Chinese drone companies such as DJI and Ehang
(Beijing Yi-Hang Creation Science & Technology) conquered majority of the civilian drone industry,
with DJI alone dominating 85% of the global market share. Ehang also created the world’s first flying
taxi drone, Ehang 184, an eco-friendly low altitude autonomous aerial vehicle capable
of providing transportation and medium distance communication.In some regions, such as the
Pearl River Delta, manufacturers have problems with labor shortages, raising wages, and higher
expectations regarding work from more highly educated young people. This has increased the demand for industrial
robots. As of 2017, China is the largest user and
producer of robotics technology, as well as the first country in the world to perform
an automated dental implant. It is the largest and fastest-growing robotics
market in the world, and plans to manufacture at least 100,000 industrial robots annually
by 2020.====Software industry====
The Chinese software industry in 2010 had a higher than 15% share of the world’s software
and information service market and had been growing by an average 36% each year during
the previous decade. Chinese IT companies have been moving away
from narrow downstream services and products to having a full range. China, with the active support of the Chinese
government, is a leading pioneer in Internet of Things technology.According to the China
Internet Network Information Center there were 751 million internet users as of 2017,
with 53.2% of the population being internet users. The number of mobile internet users reached
724 million, with high penetration rates for mobile phones and broadband internet. By 2017, China has the largest e-commerce
market in the world, worth US$1.132 trillion, with a significant lead on other markets and
almost tripling US market, the second largest.In 2017, there were more than 1.36 billion mobile
subscribers in China, with the number of fixed line subscriptions hitting 310 million. The number of 4G users increased significantly,
hitting 932 million by August 2017. By 2020, China plans to adopt 5G network nationwide. State-owned China Telecom has already deployed
5G-oriented C-RAN fronthaul network, unveiling that it will be conducting commercial trials
of 5G technology in 2019 and carry out network field trials in six Chinese cities in the
latest sign of China’s determination to lead the global deployment of the next-generation
mobile technology.====Microprocessors====
China has its own versions of microprocessors, manufactured and developed domestically, which
are also used to build the world’s most powerful supercomputers.====Supercomputing====
Supercomputing in China has expanded rapidly. Supercomputing affects the possibility to
do cutting-edge research in many areas such as design of pharmaceuticals, cryptanalysis,
natural resource exploration, climate models, and military technology. As of 2017, China had 202 of the 500 greatest
supercomputers in the world, far exceeding any other country (including the US which
has 143), in addition to possessing the top 2 most powerful supercomputers. China is developing the capacity to manufacture
the components domestically and plans to be the first to build an exascale supercomputer. China may also be planning to create much
more powerful large-scale distributed supercomputing by connecting its supercomputer centers together. Tianhe-1 was for a period in 2010-2011 the
world’s fastest supercomputer. In June 2013, Tianhe-2, the successor to Tianhe-1,
took the crown from its predecessor. In 2016, China’s new supercomputer, Sunway
TaihuLight became the world’s most powerful supercomputer, significantly surpassing Tianhe-2’s
capabilities by three folds, while using Chinese-made chips. This signals China’s success not only in the
supercomputing industry, but also its domestic chip-making technology.====Semiconductors====
China’s semiconductor industry has despite extensive governmental support had many problems
in areas such as innovative new designs. This may be due to factors such as poorly
guided state and local government support for soon outdated technologies and geographically
scattered efforts, lacking engineering education, and poor protection of intellectual property. This may change by factors such a new emphasis
on market mechanisms rather than direct support, concentration of efforts, return of Chinese
who have studied abroad, increased pressure on foreign companies to transfer technology,
indigenous Chinese technological standards, and increased demands for indigenous technology
in the local market.The country has rapidly progressed in the semiconductor industry,
while backing its largest chip maker and developer, Tsinghua Unigroup, with a US$150 billion funding
to secure China’s dominance in the semiconductor technology, and build a world-class semiconductor
industry over the next 5 years.===Energy===As China rapidly industrializes, power consumption
and power generation are also increasing as well as research on these issues.====Power generation and transmission====
Coal is predicted to remain the most important power source in the near future and China
has been seen as the world leader in clean coal technology. In 2009 China, become the world’s largest
investor in renewable energy technologies. Nuclear power is planned to be rapidly expanded
with China wanting to maximize self-reliance in nuclear reactor technology manufacturing
and design although international cooperation and technology transfer are also encouraged. Advanced pressurized water reactors such as
the CPR-1000 and the AP1000 are the mainstream technology for the near future. Later very high temperature reactors, such
as pebble bed reactors, are a priority. By mid-century fast neutron reactors are seen
as being the main technology.China in 2012 intended to spend $100 billion on smart grid
technology during the next five years, to install 300 million smart meters before 2016,
and to become the world leader in electric power transmission. Ultra high voltage electricity transmission
in China is being introduced order to reduce transmission losses. is increasing focus on environmental concerns
and renewable energy technology.===Entertainment===
The Chinese animation industry and access to the latest technology, such as 3D computer-generated
imagery technology, is actively supported by the Chinese government and included in
the latest national planning. In part, this may be because of a desire to
increase Chinese soft power. The same technology as in Hollywood is available
and much postproduction is outsourced to China. Successful indigenous artistic creativity
is seen as a problem and may be restricted by factors such as production being aimed
at getting government patronage rather than public approval, censorship, and some storylines
based on Chinese culture not appealing to foreign audiences. DreamWorks Animation, in a joint venture with
Chinese companies, will set up a studio in Shanghai that may eventually get bigger than
DreamWorks HQ, in part to avoid to quota restrictions on foreign films with China within a decade
having been predicted to become the world’s biggest cinema and entertainment market. Disney has also entered into a partnership
in order to help develop the Chinese animation industry.The China Research Institute of Film
Science & Technology and the China Film Group Corporation developed and in 2012 put into
commercial use the DMAX motion picture film format as well as associated technologies. It has been described as a competitor to IMAX
and as laying the foundation for Chinese film projection technology using indigenous Chinese
technology and intellectual property.===Environment-friendly technologies===Rapid industrialization has been accompanied
by many environmental problems and rising pollution in China. One part of the Chinese response involves
advanced technology such as the world’s largest high-speed rail network and high fuel efficiency
requirements for vehicles. China is rapidly expanding its wastewater
treatment systems and power plant emission reduction systems. Due to the Chinese water crisis, as well as
for future exports, China is building up its desalination technological abilities and plans
to create an indigenous industry. Some cities have introduced extensive water
conservation and recycling programmes and technologies.===Health=======
Biotechnology and genetics====Monitor Group in a 2010 report predicted that
China within a decade will become the world leader in discovery and innovation in life
sciences. Some research is seen as less controversial
in China than elsewhere such as research regarding the genetic causes of intelligence. BGI, formerly Beijing Genomics Institute,
has been described as having the world’s largest DNA sequencing facilities.Stem cell research
and stem cell treatments are less controversial in Chinese culture which have supported Chinese
research as well medical tourism to China in order to receive experimental and often
unproven therapies. In 2012 a regulatory crackdown was instituted
which may increase the ability of the Chinese industry to get approval for sales of future
therapies to other nations. More generally, China aims and has made progress
towards becoming a world leader in regenerative medicine which also includes areas such as
tissue engineering and gene therapy.China in 2011 stated that biotechnology (including
biopharmacy, biological engineering, bio-agriculture and biomanufacturing) was a major priority
for science and technology spending. Biotechnology will be used to enhance economic
development as well as for improving Chinese environmental protection, nutrition, healthcare,
and medicine. The Chinese governments expects biotechnology
to add 1 million jobs during the 2011-2015 period.====Brain research====
On 22 March 2018, an agreement was signed establishing the Chinese Institute for Brain
Science, Beijing. The launch of this institute may represent
a significant departure from the current policy focus on applied research and development. Once completed, the new brain institute will
serve as a core facility for the country’s planned project to study the human brain. The institute will not be part of the Chinese
Academy of Sciences. Rather, it will collaborate with the academy,
along with Beijing’s other leading biomedical institutions, including Tsinghua University,
Peking University and the Academy of Military Medical Sciences.The new institute will probably
receive funding both from the National Natural Science Foundation and from the mega-science
programmes within the Scientific and Technological Innovation 2030 Project. In March 2018, the government announced plans
to place the National Natural Science Foundation under the Ministry of Science and Technology
but the implications of this latest reorganization of science are unclear, as the two agencies
have different missions in support of basic research.====Pharmaceuticals and medical technology
====Merrill Lynch predicted in 2011 that China
would become the world’s second largest pharmaceutical market in 2013 and the largest in 2020. The chief executive of Hoffmann-La Roche in
2012 stated a few years ago many Chinese life sciences scientists had to leave China but
that many were now returning to conditions often better than in the West regarding laboratories,
funding, and political support for the industry. Counterfeit drugs have caused a number of
scandals as well as being a problem for drug development and authorities have increased
regulations and enforcement.A 2011 report by PwC stated that a decade earlier China
barely had any presence in the medical technology industry but its abilities had been rapidly
growing. China could well become more important than
Europe by 2020.===Machine tools===
Development of advanced machine tools, such as computer numerical control machine tools,
are seen as a priority and supported by the Chinese government. China is the world’s leading producer and
consumer of machine tools. A 2010 US government report stated that US
export controls of advanced five axis machine tools were ineffectual due to the technical
capabilities of Chinese and Taiwanese manufacturers.===Military technology===One example of new Chinese military technology
is the DF-21D anti-ship ballistic missile which reportedly has contributed to a quick
and major change in US naval strategy. China is developing anti-satellite weapons
and plans to make the navigational Beidou system global by 2020. Other new technologies include Chinese anti
ballistic missile developments, the Chengdu J-20 fifth-generation jet fighter, and possibly
electromagnetic pulse weapons. Chinese reconnaissance satellites are, according
to a 2011 report, almost equal to those of the United States in some areas in which China
had almost no capability a decade earlier. Despite increased defense spending, China’s
share of the world’s import of arms is rapidly falling, in part reflecting the increased
abilities of the indigenous military production. China is also developing power projection
military capabilities such as through the Chinese aircraft carrier programme and the
Type 071 amphibious transport dock. 15-28% of governmental R&D expenditures may
go to military research according to some unofficial estimates. The Chinese defense sector remains almost
completely state-owned but military equipment production has been reorganized into corporate
bodies allowing limited competition and the defense patent system has been reformed to
allow greater rewards to innovative enterprises and individuals. The organizational structure has shed civilian
applications while at the same time cooperation with the civilian sector has increased and
state supported civilian research sometimes have dual use applications. Chinese jet engines remains a problematic
area that has caused concern at the highest levels with China still being largely dependent
on imports from foreign manufacturers. One possible explanation is a continued Soviet
style fragmentation of the research and production line into many isolated units having little
contact with one another causing problems with overall standardization, integration,
and quality control. More problems from this may be duplication
of efforts, dispersal of efforts, and unproductive competition over patronage causing problems
such as dishonest reporting of problems. High precision jet engines may be particularly
sensitive to accumulated quality problems.====History of China’s hydrogen bomb====
China successfully tested a hydrogen bomb on June 17, 1967 at Lop Nur Nuclear Weapon
Test Base, in Malan, Xinjiang (also known as “Test No. 6”). China became the fourth country to have successfully
developed a thermonuclear weapon after the United States, Soviet Union and the United
Kingdom. The device was dropped from a Hong-6 (Chinese
manufactured Tu-16) and was parachute-retarded for an airburst at 2960 meters. The bomb was a three-stage device with a boosted
U-235 primary and U-238 pusher. The yield was 3.3 megatons. It was a fully functional, full-scale, three-stage
hydrogen bomb, tested 32 months after China had made its first fission device. China thus produced the shortest fission-to-fusion
development known in history. China had received extensive technical help
from the Soviet Union to jump-start their nuclear program, but by 1960, the rift between
the Soviet Union and China had become so great that the Soviet Union ceased all assistance
to China.[1] Thus, the Number 6 test was indeed an independent endeavor, after the induced
military and economic sanctions enacted by the superpowers at the time, the United States
and the Soviet Union. China’s H-bomb was different from the traditional
Teller-Ulam configuration. As an advantage, it was completed without
the calculations needed from supercomputers, which would consume a lot of time. To shrink the size of the weapon, the reflectors
were made parabolic with the solid fusion fuel located at the foci. It is also known as Yu Min Design (or Yu-Deng
Design) as Yu Min made major contributions included the solutions to a series of fundamental
and critical theoretical problems of nuclear weapons, which led to breakthrough of the
unique hydrogen bomb. The goal of China was to produce a thermonuclear
device of at least a megaton in yield that could be dropped by an aircraft or carried
by a ballistic missile. Several explosions to test thermonuclear weapon
designs, characteristics and yield boosting preceded the thermonuclear test.[1]===
Mining and rare earth industry===Advisory firm The Beijing Axis director Lilian
Luca in 2010 stated that China was becoming a world leader in mining technology. Technological solutions were initially concentrated
on achieving massive low-cost production but increasing emphasis has been placed on environmental
and safety issues in part reflecting greater concern in China with environmental issues. China was already a world leader in certain
areas such as rare earth elements. China has imposed export quotas on rare earth
elements, 95% of which are mined in China, citing environmental issues, but has been
accused of wanting to force high-tech industry using rare earth elements to move to China. Finding rare earth elements is only the first
and some argue the easiest step. Other steps towards manufacturing such as
refining is controlled by China and Japan with the previously dominant United States
having lost all of its producers and much of its fundamental technological ability with
the number of scientists and engineers in the area declining dramatically.===Polar research===
The Chinese Arctic and Antarctic Administration (CAA) organizes China’s scientific programme
for both the Arctic and Antarctic. Polar research by China, in particular in
Antarctica, has been growing rapidly. China now has three Antarctic research stations
and one in the Arctic on the Norwegian island of Svalbard.===Space science===The Chinese space program is a major source
of national pride. In 1970 the first Chinese satellite, Dong
Fang Hong I, was launched. In 2003 China become the third country to
independently send humans into space with Yang Liwei’s spaceflight aboard Shenzhou 5. In 2008 China conducted a spacewalk with the
Shenzhou 7 mission. In 2011 Tiangong-1 was launched which was
the first step towards a Chinese space station around 2020. The active Chinese Lunar Exploration Program
includes a lunar rover in 2013 and possibly a manned lunar landing in the 2020s. Experience gained from the lunar program will
be used for future programs such as exploration of Mars and Venus.China plans to launch 5
commercial satellites for foreign customers in 2012 and aims to capture 15% of the commercial
launch market and 10% of the satellite export market by 2015. In 2011 China launched a total of 19 rockets,
which was the second most after Russia.The Five hundred meter Aperture Spherical Telescope,
completed in 2016, is the world’s largest radio telescope.===Textiles===
China in 2012 produced more than one-third of the developed world’s apparel import but
the share has been decreasing in recent years as low-technology and labor-intensive production
has been moving to regions like Southeast Asia and Eastern Europe.===Transportation===Transportation infrastructure continues to
be rapidly developed. The National Trunk Highway System was in 2011
estimated to surpass the US interstate system in length. Many Chinese cities have or are planning to
build metros or other forms of rapid transit.====Commercial aircraft====
The state owned Comac aerospace manufacturer aims to reduce Chinese dependency on foreign
companies for large passenger aircraft. The future C919 aims to be completely made
in China.====Motor vehicles====
The automotive industry in China is the world’s largest producer of motor vehicles. However, China’s indigenous car companies
have had difficulties on the global market and the growing electric vehicle market has
been seen as way to remedy this. China in 2010 proposed controversial legislation
requiring foreign electric vehicle producers to form minority joint-ventures and share
technologies with Chinese carmakers in order to get market access. A 2011 report financed by the World Bank stated
that China was becoming the world leader on electric vehicles.====Shipbuilding====
In 2009-2010 China become the world’s largest shipbuilder but South Korea regained the top
position in 2011 in part due to more advanced technology. China is developing its technological abilities
and competition is expected to increase.====Trains====The BBC wrote in a 2011 article on high-speed
rail in China that China in 2005 had no high-speed railways. In 2010 it had more than Europe and in 2012
China was expected to have more than the rest of the world combined. China demanded that foreign companies wanting
to participate had to share their technology. Some 10,000 Chinese engineers and academics
then in three years produced a faster Chinese high-speed train that China is now exporting
it to other nations.==See also==Chinese Academy of Sciences
Chinese Academy of Engineering Chinese Academy of Social Sciences
CSTNET CERNET
History of science and technology in the People’s Republic of China
List of Chinese inventions Scientific publishing in China
Science in newly industrialized countries Made in China 2025
China–United States trade war (2018–present)==Source==
This article incorporates text from a free content work. Licensed under CC-BY-SA IGO 3.0 UNESCO Science
Report: towards 2030, UNESCO, UNESCO Publishing. To learn how to add open license text to Wikipedia
articles, please see this how-to page. For information on reusing text from Wikipedia,
please see the terms of use

Add a Comment

Your email address will not be published. Required fields are marked *